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Abstract: The popularity of fluorescent labelling and mesoscopic optical imaging techniques
enable the acquisition of whole mammalian brain vasculature images at capillary resolution.
Segmentation of the cerebrovascular network is essential for analyzing the cerebrovascular
structure and revealing the pathogenesis of brain diseases. Existing deep learning methods
use a single type of annotated labels with the same pixel weight to train the neural network
and segment vessels. Due to the variation in the shape, density and brightness of vessels in
whole-brain fluorescence images, it is difficult for a neural network trained with a single type of
label to segment all vessels accurately. To address this problem, we proposed a deep learning
cerebral vasculature segmentation framework based on multi-perspective labels. First, the pixels
in the central region of thick vessels and the skeleton region of vessels were extracted separately
using morphological operations based on the binary annotated labels to generate two different
labels. Then, we designed a three-stage 3D convolutional neural network containing three
sub-networks, namely thick-vessel enhancement network, vessel skeleton enhancement network
and multi-channel fusion segmentation network. The first two sub-networks were trained by
the two labels generated in the previous step, respectively, and pre-segmented the vessels. The
third sub-network was responsible for fusing the pre-segmented results to precisely segment
the vessels. We validated our method on two mouse cerebral vascular datasets generated by
different fluorescence imaging modalities. The results showed that our method outperforms the
state-of-the-art methods, and the proposed method can be applied to segment the vasculature on
large-scale volumes.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The brain relies heavily on blood vessels for a constant supply of oxygen and nutrients [1,2].
Many neurological diseases have a vascular component, such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), and stroke [3–5]. Accurate mapping of the cerebrovascular network
structure is essential for understanding brain function and the pathogenesis of brain diseases.
With the development of fluorescent labelling technology and imaging techniques and optical
imaging, mesoscopic whole-brain optical imaging, such as fluorescence micro-optical sectioning
tomography (fMOST), light-sheet microscopy (LSM) and serial two-photon microscopy (STP),
could obtain an entire mouse brain vasculature at capillary-resolution [6–8]. Segmentation of

#458111 https://doi.org/10.1364/BOE.458111
Journal © 2022 Received 9 Mar 2022; revised 23 Apr 2022; accepted 22 May 2022; published 1 Jun 2022

https://orcid.org/0000-0001-7404-6595
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.458111&amp;domain=pdf&amp;date_stamp=2022-06-01


Research Article Vol. 13, No. 6 / 1 Jun 2022 / Biomedical Optics Express 3658

cerebral vessels from the generated image data is a fundamental step in analyzing the vessel
structures and revealing the pathogenesis of brain diseases.

Unlike other image segmentation tasks, accurate segmentation of whole-brain fluorescent
vascular images is challenging (see Fig. 1). First, high-resolution whole-brain imaging can obtain
a fine vascular network including arteries, veins, and capillaries at the same time. The features of
different scale vessels vary significantly in shape, brightness, and density. Since the fluorescent
markers are labelling the epithelial cells of the blood vessels, it leads to the cavities in the centre
of the thick vessels when imaging. In contrast, the fine vessels are almost no cavities. The
signal-to-noise ratio in the images varies greatly due to the fluorescent signal intensities. In
some micro-vessel regions, the low intensity of the fluorescence signal makes the image contrast
between the vessels and the background is low. Second, the imbalance problem is serious in 3D
vascular images. More than 90% of vessels in whole-brain fluorescent images are capillaries
[6]. The number of features in the thick and very thin vessel regions is very sparse, resulting
in the problem of being detected by segmentation methods. Last, the cerebral vasculature is a
network-like structure whose topological features are biologically meaningful, so the topological
structures of vascular networks should be preserved as much as possible during segmentation [9].

Fig. 1. Whole mouse brain vasculature image acquired by fluorescence Micro-Optical
Sectioning Tomography. Three 3D volumes extracted from the entire brain data illustrate
the complex features of the cerebrovascular. Scale bar, 1000 µm (the coronal sections).

Vessel segmentation is one of the most common tasks in biomedical image analysis. Many
methods have been proposed for vessel segmentation in recent decades [10–12]. Existing
vessel segmentation algorithms can be roughly classified into traditional vascular segmentation
algorithms and deep learning-based segmentation algorithms according to whether the manually
labelled ground truth is used or not.

Traditional segmentation algorithms mainly include threshold-based methods, filter-based
methods, model-based methods, active contour methods, etc. For example, Frangi et al. [13]
proposed a Hessian matrix-based edge detection filter to detect tubular-like structures. Zhao et
al. [14] proposed a weighted symmetry filter for the segmentation of 3D vessels from different
imaging modalities. Zeng et al. [15] used an anisotropic diffusion filter combined with graph cuts
to segment the liver vessels. Both Shang et al. [16] and Cheng et al. [17] used the active contour
models to segment the vascular tree structures. A multi-model-based approach for segmenting
blood vessels in 3D fluorescence cryomicrotome images was introduced by Goyal et al. [18].
Ji et al. [8] utilized a series of filters to segment the whole-mouse-brain vessels acquired by
STP. These traditional algorithms require a hand-crafted feature extractor, relying on rich prior
knowledge. In addition, the designed feature extractors can only be used for specific imaging
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modalities. It is challenging to design a model covering all vessels’ features for whole-brain
fluorescence images with complex features.

In contrast to traditional methods that utilize hand-crafted features, deep learning-based
methods can automatically extract complex features from images. Benefiting from the powerful
feature extraction capabilities, deep learning-based methods have been successfully used in
biomedical image processing. In recent years, several excellent deep learning-based vessel
segmentation methods have been proposed [12]. Convolutional neural networks (CNNs) are the
most commonly used deep learning-based vessel segmentation methods. For example, Tahir
et al. [19], Haft-Javaherian et al. [20] and Damseh et al. [21] used CNNs for segmentation
of brain vasculature in two- or multi-photon images. Kirst et al. [7] and Todorov et al. [22]
used CNN to segment mouse brain vessels imaged by light-sheet microscopy. Tetteh et al. [23]
introduced DeepVesselNet, which uses 2.5D CNN instead of 3D CNN to segment vessels in 3D
angiographic volumes. These deep learning methods follow the idea of semantic segmentation
in computer vision. The vessels are treated as a common foreground in images, and the neural
networks are used to predict the probability that each pixel belongs to the foregrounds. Recently,
some specifically optimized neural networks for the segmentation of vascular targets have been
proposed. Yan et al. [24], Li et al. [25] and Wang et al. [26] used the attention mechanism to
design networks to focus on details or difficultly segmented vessel regions in images. Wang et
al. [27] and Yan et al. [28] used multi-task approaches to separately segment different types of
vessels (arteries or veins, thick or thin vessels) in images. In addition, Yan et al. [29] and Shit
et al. [9] proposed skeletal similarity metrics or loss functions for the segmentation of tubular
structures from a perspective of preserving the topology structure of vessels. These optimized
methods require special loss functions or additional networks to complete the segmentation tasks,
increasing the difficulty of network design.

Although deep learning-based methods have achieved state-of-the-art results, no single
segmentation method can be applied to different imaging modalities [10], especially whole-brain
fluorescence imaging. The existing deep learning methods train and segment vessels using a single
type of annotated label with a per-pixel loss that the weight of each pixel is the same. However,
an extremely unbalanced ratio exists among vessels with different diameters in whole-brain
fluorescence images. The proportion of thick vessels and very thin vessels are small. This
imbalance causes the pixel losses of thick and very thin vessels to be overwhelmed by the loss
of other vessel pixels when the network is trained. The network has difficulty learning the
features (cavities, low fluorescent signal) at the thick and very thin vessels, resulting in inaccurate
segmentation.

To address this problem, we propose a three-stage deep learning cerebral vasculature seg-
mentation framework based on multi-perspective labels. The segmentation task is divided into
three stages. Each stage is implemented by separate models. To train these models, two labels
highlighting the central region of the thick vessels and the skeleton region of vessels were
generated based on the binary annotated labels by morphological operations. The first two
models were trained by these two generated labels, respectively, and pre-segmented the thick
vessels and the skeleton of vessels. As the labels highlight the central region and the skeleton
region of vessels, the networks could pay more attention to learning the features of these regions.
After pre-segmentation, the third model fuses the pre-segmented results to precisely segment the
vessels. Experimental results on two different whole-brain fluorescence datasets demonstrate that
our proposed methods achieved the state-of-the-art level for segmenting cerebral vasculature.

2. Materials and method

2.1. Whole-brain vasculature fluorescence imaging and dataset preparation

In this work, we used two types of fluorescent vascular data. The fluorescent dye-labelled and
the transgenic-labelled whole mouse brain vessels, respectively. All animal experiments were
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approved by the Institutional Animal Ethics Committee of Huazhong University of Science and
Technology (the IACUC protocol number is 2017-S166 and it is valid from Sep 1, 2017 to Aug
31, 2022).

Dataset 1 is the vasculature of a C57BL/6 adult mouse imaged by fluorescence Micro-Optical
Sectioning Tomography (fMOST) (BioMapping 5000; OEBio Inc.) [30]. First, the mouse was
intravenously injected with DyLight594-Lycopersicon esculentum lectin, which marked vessels
throughout the mouse’s body. Then the mouse brain was removed and imaged continuously using
the fMOST at a resolution of 0.35µm × 0.35µm × 2µm voxels. The size of the uncompressed
image dataset exceeded 3.8 terabytes (8-bit pixel depth) with more than 5,000 coronal sections.

Dataset 2 is the vasculature of a Tek-Cre::Ai47 transgenic mouse imaged by high-definition
fMOST (HD-fMOST) [31]. The transgenic mouse is a hybrid of a Tek-Cre transgenic mouse
and an Ai47 transgenic mouse. In this mouse, the epithelial cells in the vascular wall were
labelled with green-fluorescent protein (GFP). Then the mouse brain was removed and imaged
continuously using the HD-fMOST at a resolution of 0.32µm × 0.32µm × 1µm voxels. The size
of the uncompressed image dataset exceeded 20 terabytes (16-bit pixel depth) with more than
12,000 coronal sections.

We resampled the resolution of the two datasets to 1 µm / pixel and randomly cropped 82
volumes of size 200 × 200 × 200 pixels from Dataset 1 and 100 volumes of size 160 × 160 × 160
pixels from Dataset 2. We used the segmentation editor module of Amira software to annotate
the vessels in the volumes manually. The original volumes and annotated volumes were used to
train and test our proposed network.

2.2. Multi-perspective label generation

Based on the annotated vessel binary labels, two different perspectives of labelling data are
generated using morphological operation. Namely, the thick-vessel-centre reinforced label
and the vessel skeleton reinforced label (see Fig. 2). Thick-vessel-center reinforced labels are
generated by performing continuous erosion operations on the original vessel binary labels until
all foreground pixels are eroded, or the specified number of erosion rounds is reached. During
the erosion process, the pixels eroded in each round are recorded in a blank image according to
pixel coordinates and given a different grey value. The more rounds of erosion, the higher the
grey value of the corresponding eroded pixels. Since the erosion operation will erode from the
edges of the vessels inward, more erosion rounds are needed to erode the thick vessels than the
thin vessels. The pixel values in the centre regions of thick vessels are higher than those in the
other regions. The generation process of the vessel skeleton reinforced labels firstly extracts the
vascular centerlines using 3D skeletonization and then performs successive dilation operations
on the centerlines. For each round of dilation, the dilated pixels are given a different grey value,
and the more rounds of dilation, the lower value of the corresponding pixels. During dilation,
the original vessel binary label is used as a mask, and dilation is stopped when all pixels in the
mask are covered by the dilated pixels. Due to the dilation operation from the centerlines of
vessels outward, the pixel values of the centre region of all vessels are brightest in generated
labels, regardless of the thickness of vessels.

The two different perspective labels use the grey-scale difference to mark the centre of thick
vessels as well as the skeletal regions of vessels. In the training stage, these labels are used to
train the network, allowing the network to focus on these hard-to-segment regions.

2.3. Network architecture

We designed a three-stage network, as shown in Fig. 3. The architecture contains three
sub-networks: thick-vessel enhancement network, vessel skeleton enhancement network, and
multi-channel fusion segmentation network.
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Fig. 2. 2D/3D exemplar results of multi-perspective labels generation process. Gray images
are transformed into pseudo-colour images for better visualization.
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Fig. 3. The architecture of the proposed three-stage framework. The framework contains
three sub-networks: thick-vessel enhancement network, vessel skeleton enhancement network,
and multi-channel fusion segmentation network.
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All three sub-networks use an encoder-decoder U-shape network structure. The vessel features
are extracted from the original image by the encoder network, and as the network gets deeper,
more high-level image features are extracted. The decoder network fuses and decodes the features
at different scales and finally outputs a prediction map at the original resolution. Since the
function of each sub-network is different, the structure of the sub-networks differs in some details.

Both the thick-vessel enhancement network and the vessel skeleton enhancement network use
the 3D fully convolutional networks (FCNs) [32]. This network structure extracts features at
different scales by sampling five times. The deeper the sampling, the larger the receptive field is,
and more global semantic information is extracted. Then the probability map of each pixel in
the image is output by five times of upsampling. Since the role of the thick-vessel enhancement
network is to pre-segment the thick vessels, especially to identify and fill the cavities in the
centre of thick vessels, these features belong to the global semantic information. Therefore, the
thick-vessel enhancement network reads only the last two scales of the feature layers for decoding
and predicting the probability map. The vessel skeleton enhancement network needs to identify
all vascular skeletons. In some thin vessels, the skeleton features are not obvious due to the
low intensity of fluorescence signals. That means the network needs not only global semantic
information but also shallow (pixel) information. Therefore, in the decoding stage, we utilize all
feature layers for decoding and predicting the probability map.

The multi-channel fusion segmentation network uses a modified 3D U-net [33]. This network
reads the outputs of the two previous sub-networks and the original vessel volumes to predict
the final segmentation results. As most of the vessels have been pre-segmented by the first two
sub-networks, we only perform three downsampling to extract features to reduce the network
size.

2.4. Training strategy and loss function

The three sub-networks are trained separately. The thick-vessel enhancement network reads the
original vessel volumes and is trained using thick-vessel-centre reinforced labels. In the training
stage, only pixels with grey-scale values above a given threshold (pixels in the centre of thick
vessels) and background pixels are used for the loss calculation and backpropagation. Similarly,
the vessel skeleton enhancement network reads the original volumes and the vessel skeleton
reinforced labels for training. Only the pixels in the vascular skeleton region and the background
pixels participate in the loss calculation and back propagation during the training process. The
multi-channel fusion segmentation network reads the original images, as well as the predicted
probability maps generated by the first two sub-networks, and is trained using the original binary
labels to predict the final segmentation results.

The soft-Dice loss is adopted in the training stage:

loss = 1 −

W∑︂
i=0

H∑︂
j=0

D∑︂
k=0

mijk

(︄
2 × yijk × yijk

yijk2 + yijk
2

)︄
, (1)

where yijk is the truth value of the pixel at (i, j, k) in the 3D volume. 1 denotes that the pixel
belongs to the vessels and 0 denotes that the pixel belongs to the background. yijk is the predicted
value. We use a sigmoid function to constrain yijk between 0 and 1. mijk is a mask that determines
which pixels in the labels participate in the loss calculation. Since only some pixels in the labels
participate in the loss calculation and back propagation when the first two networks are trained, a
mask is needed to filter these pixels that are involved in the loss calculation. The size of mijk is
the same as the label size. The value of mijk is 1 when the pixel at (i, j, k) are involved in the
loss calculation, otherwise, the value of mijk is 0. In the third sub-network, since all pixels are
involved in the calculation of the loss for the prediction of the final vessel segmentation results,
the value of mijk is 1.
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2.5. Implementation details

We use PyTorch to implement our framework. All experiments were performed on a computer
with Intel Core CPU i9-9900k, 64GB RAM, and NVIDIA RTX 3090 GPU with 24GB video
memory. In the training stage, The gradient descent algorithm is set as ’Adam’. The learning rate
is 0.0001, and the batch size is 2. The dataset was divided into training, validation, and testing
sets. The proportion of the test set to the whole datasets are 12% (Dataset 1) and 20% (Dataset
2), respectively. In each epoch of the training process, volumes with a fixed size of 128 × 128 ×

128 pixels were fed into the network. These volumes were randomly cropped from the original
volumes and randomly changed the order of the x, y, z dimensions (random transpose) to augment
the size of the training dataset. The training and validation loss curves are shown in Figs. S1–2.

2.6. Evaluation metrics

The final output of our network is a probability map. A binary segmentation result can be
generated by the threshold value of 0.5. Pixels with a value greater than or equal to 0.5 are
the foreground, and the other pixels are the background. We used four overlap-based metrics:
Accuracy, Precision, Recall, and F1-score (Dice). We also used two morphological similarity-
based metric: Hausdorff Distance (Hausdorff ), as in Tahir et al. [19] and centerlineDice (clDice)
[9]. The evaluation metrics are described below:

Let TP notes the number of vessel pixels correctly detected, FP notes the number of vessel
pixels incorrectly detected, TN notes the number of non-vessel pixels correctly detected, FN
denotes the number of non-vessel pixels incorrectly detected. Then, Accuracy is defined as Acc
= (TP+TN)/(TP+TN+FP+FN). Precision is defined as Prec = TP/(TP+FN). Recall is defined
as Rec = TN/(TN+FP). F1-score or Dice is the harmonic mean of Precision and Recall, and it is
defined as F1 = (2TP)/(2TP+FP+FN).

Hausdorff measures how far two subsets of a metric space are from each other. the Hausdorff
distance between A and B is defined as H(A, B) = max(h(A, B), h(B, A)), where h(A, B) is the
Hausdorff distance from set A to set B, defined as h(A, B) = maxa∈A(minb∈B(d (a, b))), where a
and b are points of sets A and B respectively, and d(a, b) is any metric (e.g. Euclidian distance)
between a and b. clDice measures the topological similarity of the segmentation results and the
ground truths. The specific introduction of clDice can be found in [9]. The lower the score of
Hausdorff and the higher the score of clDice, the more the similarity between the topology of the
segmentation results and the topology of the ground truths.

3. Results

3.1. Visualization results

We visualize the pre-segmentation results of the first two sub-networks and the final segmentation
results, and compare them with the ground truths. The result are shown Fig. 4. As mentioned
above, the thick-vessel enhancement network focuses on predicting the central region of the
thick vessels in the volumes, and the cavities in thick vessels can be filled effectively, but the
high-level features extraction ability of the network structure makes it ineffective in predicting
fine vessels or low fluorescent signal regions. On the other hand, the vessel skeleton enhancement
network deals with the segmentation of the skeletal region of all vessels in the image. The
adopted network structure can effectively capture the details in the volume. The network can
accurately segment the vessels at some weak fluorescence signal regions, thus preserving the
vascular topology connectivity. However, it does not work well for cavities in thick vessels.
The multi-channel fusion segmentation network combines the prediction results of the first two
sub-network with the original volumes to output the final vessel segmentation results. The results
effectively predict the cavities in thick vessels and the skeletal region of vessels. It can be seen
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that the final segmentation results are very close to the gold truths. The more visualization results
are shown in Figs. S3–4.

Original image Ground truth Output 1 Output 2 Final output

Fig. 4. Four examples of vessel segmentation results. Output 1 and Output 2 are the
pre-segmentation results of the thick-vessel enhancement network and vessel skeleton
enhancement network. The first and second rows are Dataset 1 (volume size: 192 × 192 ×

192 µm), and the third to fourth rows are Dataset 2 (volume size: 160 × 160 × 160 µm).

We also compare the proposed method with other similar methods, namely OTSU [34],
VesSAP [22], 3D-Unet [33] and Vnet [35]. OTSU is a traditional segmentation method, and the
other three are deep learning-based methods. The results are shown in Fig. 5. It can be seen that
OTSU and VesSAP are difficult to deal with the cavities in the centre of thick vessels as well
as the weak fluorescence signal vessels, and the predicted results are largely different from the
ground truths. Although 3D-Unet and Vnet are able to fill some of the cavities in the thick vessels,
they still cannot segment well at some of the thin vessels, resulting in a discontinuous vascular
topology. In addition, in Dataset 2, 3D-Unet and Vnet produced large false segmentation around
the thick vessels. They predicted some background pixels as thick vessels, resulting in inaccurate
segmentation. Only our method can effectively segment both the cavities in thick vessels and
the weak fluorescence signal vessels. The segmentation effect is significantly better than the
other four methods. We also selected some detailed regions from the test set and showed the
segmentation results of our method and 3D-Unet (see Fig. 6). It can be seen that our method has
an obvious advantage both in terms of the precision of pixel segmentation and vascular topology
preservation.

3.2. Quantitative results

In this subsection, we quantitatively evaluate the effectiveness of our method and compare the
results with the other four methods. The evaluation metrics were introduced in the previous
section. Table 1 shows the final results for each approach on different metrics. The best scores
have been bolded. As can be seen, the quantitative results are consistent with the visualization
results, and our method achieves almost the best results. Our approach employs two sub-networks
that target pre-segmentation of the central region of the thick vessels and the skeletal region of the
vessels. The network can fill the cavities in the centre of thick vessels and identify and segment the
weak signals in the fine vessels, resulting in a high recall. On the other hand, as the background
pixels have participated in the loss calculation during the training of all three sub-networks, the
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Original image Ground truth Ours OTSU VesSAP Vnet3D-Unet

Fig. 5. Comparative segmentation results using different methods on six examples. The
first to third rows are Dataset 1 (volume size: 192 × 192 × 192 µm), and the fourth to sixth
rows are Dataset 2 (volume size: 160 × 160 × 160 µm). Some false segmentations are
highlighted with orange arrows and circles.
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Fig. 6. Six enlarged regions from the test set and the corresponding segmentation results
generated by our proposed method and 3D-Unet. From left to right, the volume sizes are
37×56×29 µm, 50×64×21 µm, 38×55×38 µm, 24×43×24 µm, 37×44×33 µm, 30×48×40
µm, respectively.
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segmentation results also have better suppression of the noise in the background, resulting in a
high precision.

Table 1. Quantitative comparison results on different datasets. The detailed numerical data can be
found in Data File 1 [36] and Data File 2 [37].

Method
Dataset 1 Dataset 2

Acc Prec Recall F1-score Hausdorff clDice Acc Prec Recall F1-score Hausdorff clDice

OTSU 96.15 99.11 42.81 58.94 31.63 84.72 96.89 99.22 33.73 49.47 37.26 48.65

VesSAP 98.06 87.86 84.63 85.17 27.60 96.06 98.68 90.90 86.57 88.11 40.24 91.64

3D-Unet 97.91 86.05 87.30 85.40 26.28 96.99 99.07 91.90 95.01 93.08 30.11 94.67

Vnet 98.03 89.89 81.33 84.25 28.99 94.58 99.43 95.59 93.25 94.26 36.44 94.99

Ours 98.69 87.03 92.44 89.40 24.93 97.88 99.74 97.26 96.73 96.96 29.98 98.66

To further demonstrate the effect of our method, we performed a quantitative analysis of the
pixels in the thick-vessel region and the micro-vessel region separately. These regions make
segmentation difficult and error-prone. Based on the ground truths, we extracted the centerlines of
vessels and calculated the vessel diameters. Then we extracted the vessels with diameters greater
than 10 pixels and less than 3 pixels, representing the thick vessel regions and the micro-vessel
regions, respectively. For each extracted region, a 3-pixel range is assigned to cover non-vessel
pixels to calculate the metrics (TN and FN) (see Fig. 7). We calculated Acc, Prec, Recall, and
F1-score separately and compared the results with the other four methods. Table 2 show the
comparison results. As can be seen, our approach also achieved the best results.

0

10

(a) (b)

(c) (d)

Fig. 7. Vessel pixels for quality evaluation on thick-vessel segmentation and micro-vessel
segmentation. (a) The original volume. (b) The ground truth annotation. (c) The defined
micro-vessel pixels (white regions). (d) The defined thick-vessel pixels thick-vessel. Volume
size: 147 × 88 × 141 µm.

3.3. Ablation studies

Our method proposed a multi-perspective label based vessel segmentation framework and
designed a three-stage network structure for training and predicting. In this subsection, we
designed two ablation experiments to demonstrate that the proposed method effectively improves
vessel segmentation. Both ablation experiments were performed on Dataset 1.

First, we verified the effect of each sub-network alone for vessel segmentation and compared it
with the three-stage network. As all three sub-networks are end-to-end segmentation networks,
we trained the networks by using the original volumes and annotated vessel binary labels. After
training, the networks were validated on the test set. We also use ’OR’ operation instead of

https://doi.org/10.6084/m9.figshare.19640931
https://doi.org/10.6084/m9.figshare.19640922
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Table 2. Quantitative comparison results on micro-vessel and thick-vessel segmentation.

Type Method
Dataset 1 Dataset 2

Acc Prec Recall F1-score Acc Prec Recall F1-score

Micro-vessel

OTSU 68.55 99.33 27.21 41.18 79.28 99.88 41.32 57.85

DVN 83.28 80.33 84.58 81.17 94.91 92.92 93.03 92.75

3D-Unet 81.86 78.85 85.33 80.16 95.51 96.56 90.78 93.39

Vnet 80.10 83.94 70.96 74.31 94.48 95.33 89.23 91.85

Ours 83.96 78.45 88.52 82.67 96.52 95.28 94.98 95.01

Thick-vessel

OTSU 65.90 99.87 45.61 60.56 55.49 99.97 27.05 41.40

DVN 81.97 94.02 76.72 83.02 85.59 93.76 83.30 87.45

3D-Unet 87.52 91.97 89.10 89.77 97.42 98.64 97.17 97.86

Vnet 87.94 93.39 87.56 90.06 95.88 98.30 95.24 96.59

Ours 92.73 93.89 94.29 93.98 97.68 98.38 97.86 98.09

sub-network 3 to combine the pre-segmentation results of the first two sub-networks. The
results are shown in Table 3. It can be seen that when each sub-network is used individually for
vessel segmentation, the segmentation effects of the sub-networks are not as good as that of the
three-stage network. The results indicate that three sub-networks all play a role in the three-stage
framework. The three sub-networks pre-segment the cavities in thick vessels, the skeletal regions
of vessels, and fuse the pre-segmentation results, respectively. The three cooperate with each
other to improve the effect of vessel segmentation.

Table 3. Ablation analysis of sub-networks of the proposed framework on Dataset 1. The detailed
numerical data can be found in Data File 3 [38].

Module Acc Prec Recall F1-score Hausdorff clDice

Sub-network 1 98.00 89.55 80.52 83.76 28.03 94.77

Sub-network 2 97.77 83.33 90.46 85.76 27.60 92.49

Sub-network 3 98.19 90.22 82.92 85.30 27.18 96.49

Sub-network 1
⋃︁

2 97.34 97.65 60.88 74.47 25.47 96.45

Three-stage network 98.69 87.03 92.44 89.40 24.93 97.88

Second, our proposed multi-perspective labels combined with the three-stage segmentation
framework can also enhance the existing segmentation network. We replace the multi-channel
fusion segmentation network with VesSAP, an end-to-end fully convolutional neural network.
We set the number of input channels of VesSAP to three and feed the pre-segmentation results
of the first two sub-networks and the original volumes into VesSAP for training and predicting.
The results are compared with those of VesSAP segmented independently (see Table 4). When
the pre-segmentation results were used, the segmentation effect of VesSAP was significantly
improved. This indicates that our proposed multi-perspective labels enable the network to
focus on the regions highlighted by the labels. The pre-segmented results could extract the
hard-to-segment features in the original images, so that the effect of vessel segmentation can be
improved.

3.4. Large-scale vessel segmentation

We extend our method to segment large-scale vascular data. We cropped a volume of size 1,400
× 1,200 × 600 pixels from Dataset 1. Based on our previous work of TDat [40], the volume is
split into 1,008 overlapping 3D blocks, each with a fixed size of 128 × 128 × 128 pixels. The 3D

https://doi.org/10.6084/m9.figshare.19640937
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Table 4. Ablation study of multi-perspective labels (MPLs) on Dataset 1. The detailed numerical
data can be found in Data File 4 [39].

Module Acc Prec Recall F1-score Hausdorff clDice

VesSAP 98.06 87.86 84.63 85.17 27.60 96.06

VesSAP +MPLs 98.35 82.76 93.69 87.49 25.41 97.81

blocks are segmented and merged. Pixels in the overlapping area between adjacent small blocks
are fused by the ’OR’ operation. After segmentation, we used some morphological operations,
including 2D and 3D hole filling, removing small connected domains, in order to reconstruct the
vessel network more accurately. The total segmentation and reconstruction time is 11 minutes.
The result is shown in Fig. 8 and Visualization 1. We show the original vascular volume, the
segmented volume, and the reconstructed vascular network based on the segmented volume. In
addition, we also randomly selected six regions to show the segmentation results in 2D projection.
It can be seen that our method can perform fast and accurate segmentation for a large scale of
vascular image data.

255

0

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

12
00
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Fig. 8. Vessel segmentation on large-scale images. (a) The original volume. (b) The
corresponding segmentation result. (c) The reconstructed vascular network based on the
segmented volume. (d)-(i) 2D max-intensity projection (thickness: 20 µm) of some regions
randomly selected from the original volume. The white curves represent the contour of the
segmentation volume. The original grey images are transformed into pseudo-colour images
for better visualization. Scale bar, 50 µm.

4. Discussion

We propose a three-stage network framework based on multi-perspective labels. It is used to
segment whole-brain fluorescence vascular images. Unlike other vascular imaging methods,
fluorescently labelled vessels cause cavities in the centre of thick vessels. In addition, the weak
fluorescence signal in fine vessels resulted in hard-to-segment, so that the topological connectivity
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https://doi.org/10.6084/m9.figshare.19640955


Research Article Vol. 13, No. 6 / 1 Jun 2022 / Biomedical Optics Express 3669

of vessels cannot be maintained. Our proposed method segments these ’hard’ regions by two
sub-networks. Compared with other methods, our method achieved state-of-the-art results.

The reason that causes the deep learning network to be challenging to segment effectively in
thick vessels and fine vessel skeleton regions is that the vessel diameter distribution is extremely
uneven. Most of vessels are capillaries. The percentage of the large and very thin vessel is very
small, so these hard-to-segment features account for a very small percentage of the training
samples. During the training process, the loss in these regions is overwhelmed by the loss in
most of the easy-to-segment regions. The network cannot effectively capture the features of these
hard-to-segment regions, resulting in poor segmentation. Our proposed multi-perspective labels
can screen these hard-to-segment regions and only calculate the loss of these regions during
training, thus allowing the network to focus on learning the features of these regions. In fact, if
the training dataset is purposefully selected or if the training dataset contains a high percentage
of hard-to-segment samples, the effect of the networks on segmenting these regions will also
improve. It can be noted that Vnet and 3D-Unet also work well on Dataset 2 for the segmentation
of cavities in thick vessels. It is because the transgenic fluorescent labelling method only labels
the thin epithelial cells in vessels, leaving most of vessels in images containing cavities (see
Fig. 9). This results in a high percentage of ’cavity’ features in the training samples, so the
networks can easily learn. In contrast, in the fluorescent dye-labelled vessel images (Dataset 1),
the cavities in the fine vessels are not obvious, and only the thick vessels contain cavities, so the
network has difficulty learning ’cavity’ features.

Fig. 9. Cross-section of blood vessels with different vessel diameters from two datasets.
From top to bottom: fluorescent dye-labelled vessels (Dataset 1) and the transgenic-labelled
vessels (Dataset 2). Scale bar, 20 µm.

Although our method achieves good results on segmentation effects, our approach has some
weaknesses. The biggest weakness is the complex network structure. In theory, the entire
framework could be trained end-to-end. However, the biggest problem is that end-to-end training
requires three sub-networks to be read into the GPU memory at the same time for training,
which consumes GPU memory resources very much. To solve this problem, we trained the three
sub-networks separately, consuming more time and resources than the one-stage end-to-end
segmentation network. In prediction, a volume needs to be read three times to complete the final
segmentation. However, since the features of data acquired by the same imaging modality are
very similar, once the network is trained on a dataset, the trained network can be used directly
to segment other data acquired by the same imaging modality, thus avoiding retraining of the
network. In addition, our method takes only 10 minutes to segment 1 GB of volume, which is an
acceptable sacrifice in time compared to the improvement in segmentation effect.
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5. Conclusion

This paper presents a multi-perspective label-based three-stage deep learning framework to
segment cerebral vasculature in whole-brain fluorescence images. The proposed framework
uses morphological operations to screen the thick vessel centre and vessel skeleton regions in
binary annotated labels to generate two different labels. These two labels mark the regions of
vessels that are difficult to segment. Then we use two sub-networks to pre-segment the vessels
based on these two labels respectively, and the third sub-networks to fuse the pre-segmented
results to precisely segment the vessels. Experimental results show that our method achieves
state-of-the-art performance. In future works, we will extend our approach to whole-brain
datasets, enabling segmentation and reconstruction of all vascular networks in the whole brain.
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